Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice.
نویسندگان
چکیده
Chronic stimulation of the beta(1)-adrenergic receptor leads to hypertrophy and heart failure in beta(1)-adrenergic receptor transgenic mice and contributes to disease progression in heart failure patients. The cellular mechanisms underlying these detrimental effects are largely unknown. In this study, we have identified the cardiac Na(+)-H(+) exchanger (NHE1) as a novel mediator of adrenergically induced heart failure. beta(1)-Adrenergic receptor transgenic mice showed upregulation of both NHE1 mRNA (+140+/-6%) and protein (+42+/-19%). In order to test whether increased NHE1 is causally related to beta(1)-adrenergic-induced hypertrophy, fibrosis, and heart failure, beta(1)-adrenergic receptor transgenic (TG) and wild-type (WT) littermates were treated with a diet containing 6000 ppm of the NHE1 inhibitor cariporide or control chow for 8 months. There was significant hypertrophy of cardiac myocytes in beta(1)-adrenergic receptor transgenic mice (2.3-fold increase in myocyte cross-sectional area), which was virtually absent in cariporide-fed animals. Interstitial fibrosis was prominent throughout the left ventricular wall in nontreated beta(1)-adrenergic receptor transgenic mice (4.8-fold increase in collagen volume fraction); cariporide treatment completely prevented this development of fibrosis. Left ventricular catheterization showed that cariporide also prevented the loss of contractile function in beta(1)-adrenergic receptor transgenic mice: whereas untreated transgenic mice showed a significant decrease in left ventricular contractility (5250+/-570 mm Hg/s TG versus 7360+/-540 mm Hg/s WT, dp/dt(max)), this decrease was completely prevented by cariporide (8150+/-520 mm Hg/s TG cariporide). Inhibition of NHE1 prevented the development of heart failure in beta(1)-receptor transgenic mice. We conclude that the cardiac Na(+)-H(+) exchanger 1 is essential for the detrimental cardiac effects of chronic beta(1)-receptor stimulation in the heart.
منابع مشابه
Altered calcium handling is critically involved in the cardiotoxic effects of chronic beta-adrenergic stimulation.
BACKGROUND Chronic adrenergic stimulation leads to cardiac hypertrophy and heart failure in experimental models and contributes to the progression of heart failure in humans. The pathways mediating the detrimental effects of chronic beta-adrenergic stimulation are only partly understood. We investigated whether genetic modification of calcium handling through deletion of phospholamban in mice w...
متن کاملbeta(2)-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis.
BACKGROUND Beta-adrenergic signaling is downregulated in the failing heart, and the significance of such change remains unclear. METHODS AND RESULTS To address the role of beta-adrenergic dysfunction in heart failure (HF), aortic stenosis (AS) was induced in wild-type (WT) and transgenic (TG) mice with cardiac targeted overexpression of beta(2)-adrenergic receptors (ARs), and animals were stu...
متن کاملAltered Calcium Handling Is Critically Involved in the Cardiotoxic Effects of Chronic -Adrenergic Stimulation
Background—Chronic adrenergic stimulation leads to cardiac hypertrophy and heart failure in experimental models and contributes to the progression of heart failure in humans. The pathways mediating the detrimental effects of chronic -adrenergic stimulation are only partly understood. We investigated whether genetic modification of calcium handling through deletion of phospholamban in mice would...
متن کاملPhosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure.
BACKGROUND We have recently shown that genetic inactivation of phosphoinositide 3-kinase gamma (PI3Kgamma), the isoform linked to G-protein-coupled receptors, results in increased cardiac contractility with no effect on basal cell size. Signaling via the G-protein-coupled beta-adrenergic receptors has been implicated in cardiac hypertrophy and heart failure, suggesting that PI3Kgamma might play...
متن کاملCardiotoxic and cardioprotective features of chronic β-adrenergic signaling.
RATIONALE In the failing heart, persistent β-adrenergic receptor activation is thought to induce myocyte death by protein kinase A (PKA)-dependent and PKA-independent activation of calcium/calmodulin-dependent kinase II. β-adrenergic signaling pathways also are capable of activating cardioprotective mechanisms. OBJECTIVE This study used a novel PKA inhibitor peptide to inhibit PKA activity to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 90 7 شماره
صفحات -
تاریخ انتشار 2002